Functional Data Structures

Chris Okasaki*

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, Pennsylvania, USA 15213
(e-mail: cokasaki@cs.cmu.edu)

1 Introduction

Efficient data structures have been studied extensively for over thirty years.
Nowadays, when a C programmer needs an efficient data structure for a par-
ticular problem, he or she can often simply look one up in any of a number of
good textbooks or handbooks. However, the same cannot be said for the ML or
Haskell programmer. Although some imperative data structures can be adapted
quite easily to a functional setting, most cannot.

Why should functional data structures be any more difficult to design and
implement than imperative ones? There are two basic problems. First, from the
point of view of designing and implementing efficient data structures, functional
programming’s stricture against destructive updates (assignments) is a stagger-
ing handicap, tantamount to confiscating a master chef’s knives. Like knives,
destructive updates can be dangerous when misused, but tremendously effective
when used properly. Certainly the functional programmer expects to reap sub-
stantial benefits by giving up destructive updates, but we must not be blind to
the potential costs of this tradeoff.

The second difficulty is that functional data structures are expected to be
more flexible than their imperative cousins. In particular, when we update an
imperative data structure we typically accept that the old version of the data
structure will no longer be available, but, when we update a functional data
structure, we expect that both the old and new versions of the data structure
will be available for further processing. A data structure that supports multiple
versions 1is called persistent, while a data structure that allows only a single
version at a time is called ephemeral [7]. Functional programming languages
have the curious property that all data structures are automatically persistent.
Imperative data structures are typically ephemeral, but when a persistent data
structure is required, imperative programmers are not surprised if the persistent
data structure is more complicated and perhaps even asymptotically less efficient
than its ephemeral counterparts.

Exercisel. List five situations in which persistence might be useful, even for
an imperative programiner. <&

* Research supported by the Advanced Research Projects Agency CSTO under the
title “The Fox Project: Advanced Languages for Systems Software”, ARPA Order
No. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050.

www.manaraa.com

In spite of these difficulties, however, researchers have developed numer-
ous functional data structures that are asymptotically as efficient as the best
imperative solutions for the same problems. In this tutorial, we will explore
efficient functional implementations of several common abstractions, including
FIFO queues, catenable lists, and mergeable heaps (priority queues). The empha-
sis will always be on developing data structures that achieve a good compromise
between simplicity and efficiency in practice.

Notation We will present all source code in Standard ML [20], extended with
the following primitives for lazy evaluation:

type a susp
val delay : (unit — «) — « susp
val force : a susp — «

These primitives are actually supported by several implementations of Standard
ML, including Standard ML of New Jersey. As a notational convenience, we will
write delay (fn () = €) as $e, where the scope of § extends as far to the right as
possible.

We will also assume the presence of the small streams library shown in Fig-
ure 1. This library is far from complete, containing only those stream operations
we will actually use in this paper. Note that the cons operation supplied by this
library is strict, not lazy. In fact, the only lazy operations in this library are ++
(infix append) and reverse.

2 FIFO Queues

Stacks and queues are usually the first two data structures studied by begin-
ning computer science students. The typical imperative implementation of (un-
bounded) stacks as linked lists translates very naturally to a functional setting.
However, the typical imperative implementation of (unbounded) queues as linked
lists does not because it uses destructive updates at the end of the list. Thus,
queues are perhaps the simplest example of a data structure whose implemen-
tation in a functional setting is substantially different from its implementation
in an imperative setting. For this reason, functional queues have been widely
studied [11, 9, 3, 23, 24].

A minimal signature for queues appears in Figure 2. The three main opera-
tions are snoc (g,), which adds an element z to the rear of queue ¢; head (q),
which extracts the first element of ¢; and tail (¢), which deletes the first ele-
ment of q. The signature also includes a value empty representing the empty
queue, and a predicate isEmpty. To be practical, a queue library should contain
many more utility functions, but these can all be defined in terms of the above
primitives.

www.manaraa.com

signature STREAM =

sig
type a Stream

exception EMPTY

val empty : « Stream
val isEmpty : a Stream — bool

val cons :a X a Stream — « Stream (* strict cons *)
val head ;v Stream — « (* raises EMPTY if stream is empty *)
val tail : a Stream — « Stream (x raises EMPTY if stream is empty *)
val ++ : a Stream x a Stream — «a Stream (* infizx append *)
val reverse : « Stream — « Stream

end

structure S : STREAM =

struct

datatype a StreamCell = Nil | Cons of a X « Stream
withtype a Stream = a StreamCell susp

exception EMPTY

val empty = $Nil
fun isEmpty s = case force s of Nil = true | - = false

fun cons (z, s) = $Cons (z, s)
fun head s = case force s of Nil = raise EMPTY | Cons (z, s) = =
fun tail s = case force s of Nil = raise EMPTY | Cons (z, s) = s

fun s 4+ ¢t = $case force s of
Nil = force ¢
| Cons (z, s) = Cons (z, s ++ t)
fun reverse s = let fun rev (Nil, ¢) = force ¢
| rev (Cons (z, s), t) = rev (force s, cons (z, t))
in $rev (force s, empty) end
end

Fig. 1. A small streams library.

signature QUEUE =

sig
type a Queue

exception EMPTY

val empty : a Queue
val isEmpty : a Queue — bool

val snoc s Queue X a = o Queue

val head s a Queue — « (* raises EMPTY if queue is empty *)

val tail : a Queue — a Queue (* raises EMPTY if queue is empty *)
end

Fig. 2. Signature for queues.

www.manaraa.com

2.1 A Partial Solution

The most common implementation of queues [9, 3] is as a pair of lists, one
representing the front portion of the queue and the other representing the rear
portion of the queue in reverse order.

datatype a Queue = Queue of a list x « list

In this representation, the first element of the queue is the head of the front list
and the last element of the queue is the head of the rear list. These locations
can be accessed very quickly.

fun snoc (Queue (f, r) z) = Queue (f, z 2 7r)
fun head (Queue (z :: f, 7)) =«
x

fun tail (Queue (x :: f,)) Queue (f, 7))

However, what happens when we attempt to take the head or tail of a queue
whose front list 1s empty? If the rear list is also empty, then the queue is empty,
so we raise an exception. Otherwise, the first element of the queue is the last
element of the rear list. In this case, we reverse the rear list, install the result as
the new front list, and try again.

fun head (Queue ([], [])) = raise EMPTY
| head (Queue ([], r)) = head (Queue (rev r, [1))
| head (Queue (z :: f, 7)) =
fun tail (Queue ([], [])) = raise EMPTY
| tail EQueue E]

| tail (Queue

[1, r)) tail (Queue (rev r, []))
, 7)) = Queue (f, r)

Note that the recursive calls in the second clauses of both head and tad will
always fall through to the third clauses because rev ris guaranteed to be non-
empty. Hence, we could easily optimize these calls by inlining the appropriate
code from the third clauses. However, we won’t bother because there is a more
disturbing inefficiency. It is very common to ask for both the head and tail of
the same queue. But, as it stands, this might result in reversing the same rear
list twice! To prevent this, we will maintain the invariant that the front list is
empty only if the entire queue 1s empty. Then the head operation at least will
never need to reverse the rear list. The snoc operation must also be modified to
obey the invariant.

fun snoc (Queue ([],),) = Queue ([z], [])

| snoc (Queue (f, r), z) = Queue (f, z:r)
fun head (Queue ([], -)) = raise EMPTY

| head (Queue (z :: f, 7)) =

fun tail (Queue ([], -)) = raise EMPTY
| tail (Queue ([z], r)) = Queue (rev r, [])
| tail (Queue (z :: f, r)) = Queue (f, r)

www.manaraa.com

Note the use of wildcards here. We know by the invariant that if the front list
is empty, then so is the rear list, so we avoid the redundant check by using a
wildcard.

A somewhat cleaner way to write this code is in terms of a pseudo-constructor
(also called a smart constructor [1]) that enforces the invariant. This pseudo-
constructor, called queue, takes the place of the real constructor Queue but
verifies that the front list is not empty.

fun queue ([], 7) = Queue (rev 7, [])

| queue (f, r) = Queue (f, r)

Now, we replace Queue with queue in the definitions of snoc and tail.

fun snoc (Queue (f, r), #) = queue (f, x :: r)
fun tail (Queue ([], -)) = raise EMPTY
| tail (Queue (z :: f, 7)) = queue (f, 7))

Note that the real constructor Queue 1s still used for pattern matching. The
complete source code for this implementation is given in Figure 3.

structure Queuel : QUEUE =
struct
datatype o Queue = Queue of « list x « list
(* Invariant: null f implies null r *)

exception EMPTY

val empty = Queue ([], [])
fun isEmpty (Queue (f, r)) = null f

fun queue ([], r) = Queue (rev r, [])
| queue (f, r) = Queue (f, r)

fun snoc (Queue (f, r), z) = queue (f, z :: 1)
fun head (Queue ([], -)) = raise EMPTY

| head (Queue (z :: f, r)) ==z
fun tail (Queue ([], -)) = raise EMPTY

| tail (Queue (z :: f, r)) = queue (f, r)

end

Fig. 3. A common, but not always efficient, implementation of queues.

This implementation is easy to analyze using traditional techniques of amor-
tization [27]. The basic idea is to save a credit with every snoc operation. Then,
every queue has a number of credits equal to the length of the rear list and these
credits can be used to pay for reversing the rear list when the front list becomes
empty. By this argument, we see that every queue operation requires only O(1)
amortized time.

www.manaraa.com

Unfortunately, traditional analysis techniques for amortization were devel-
oped in an imperative setting and rely on a hidden assumption that all data
structures are ephemeral, that is, that sequences of operations on data struc-
tures are single-threaded [25]. However, this assumption is routinely violated in
a functional setting, where all data structures are automatically persistent. In
the next section, we modify this implementation of queues to support persis-
tence efficiently and introduce a proof technique for proving amortized bounds
for persistent data structures.

Exercise 2. Show that the above implementation of queues takes greater than
O(1) amortized time per operation by constructing a (non-single-threaded) se-
quence of n operations that requires greater than O(n) time to execute. <&

2.2 Efficient Persistent Queues

The above queues are very efficient as long as they are used in a single-threaded
fashion. Many applications obey this restriction, but for a general-purpose queue
library, we would prefer an implementation that is efficient even when used
persistently.

As discussed in [22, 24], lazy evaluation is the key to integrating amortization
and persistence. The memoization implicit in lazy evaluation allows the same
work to be shared between different threads instead of being repeated for each
thread. (Here the term “threads” refers not to concurrency, but to different paths
of data flow.) The first step in modifying queues to deal with persistence is thus
to use streams instead of lists.! To simplify later operations, we also explicitly
track the lengths of the two streams.

datatype o Queue = Queue of a S.Stream x int x « S.Stream X int

Note that a pleasant side effect of maintaining this length information is that
we can trivially support a constant-time size operation.

Next, we strengthen the invariant to guarantee that the front stream is always
at least as long as the rear stream. We call this the balance invariant. As a special
case, the balance invariant implies that if the front stream is empty, then so is the
rear stream. When the rear stream becomes one longer than the front stream,
we perform a rotation by reversing the rear stream and appending it to the front
stream. The major queue operations are now given by

fun snoc (Queue (f, lenf, r, lenr),) = queue (f, lenf, S.cons (x, r), lenr+1)
fun head (Queue (f, lenf, r, lenr)) =

if lenf > 0 then S.head f else raise EMPTY
fun tail (Queue (f, lenf, r, lenr)) =

if lenf > 0 then queue (S.tail f, lenf—1, r, lenr) else raise EMPTY

where the pseudo-constructor gqueue is defined as

! Actually, only the front list must be changed to a stream. The rear list could remain
a list, but for simplicity, we will use streams for both.

www.manaraa.com

fun queue (f, lenf, r, lenr) =
if lenr < lenf then Queue (f, lenf, r, lenr)
else Queue (S.++ (f, S.reverse r), lenf+lenr, S.empty, 0)

The complete code for this implementation appears in Figure 4.

structure Queuel : QUEUE =
struct
datatype a Queue = Queue of o S.Stream X int X a S.Stream X int
(* Invariant: |f| > |r| *)

exception EMPTY

val empty = Queue (S.empty, 0, S.empty, 0)
fun isEmpty (Queue (f, lenf, r, lenr)) = (lenf = 0)

fun queue (f, lenf, r, lenr) =
if lenr < lenf then Queue (f, lenf, r, lenr)
else Queue (S.4++ (f, S.reverse r), lenf+lenr, S.empty, 0)

fun snoc (Queue (f, lenf, r, lenr), £) = queue (f, lenf, S.cons (z, r), lenr+1)
fun head (Queue (f, lenf, r, lenr)) =
if lenf > 0 then S.head f else raise EMPTY
fun tail (Queue (f, lenf, r, lenr)) =
if lenf > 0 then queue (S.tail f, lenf—1, r, lenr) else raise EMPTY
end

Fig. 4. Efficient persistent queues.

Exercise 3. Verify that this implementation of queues takes only O(n) time to
execute your sequence of operations from Exercise 2. <&

To understand how this implementation deals efficiently with persistence,
consider the following example. Let gy be some queue whose front and rear
streams are both of length m, and let ¢; = tail q;—1, for 0 < ¢ < m+1. The queue
is rotated during the first tail operation, and the reverse suspension created by
the rotation is forced during the last tai operation. This reversal takes m steps,
and its cost is amortized over the sequence ¢ ... ¢p,. (For now, we are concerned
only with the cost of the reverse — we ignore the cost of the append.)

Now, choose some branch point &, and repeat the calculation from ¢x to ¢p41.
(Note that ¢y is used persistently.) Do this d times. How often is the reverse
executed? It depends on the whether the branch point k is before or after the
rotation. Suppose k is after the rotation. In fact, suppose & = m so that each of
the repeated branches is a single tail. Each of these branches forces the reverse
suspension, but they each force the same suspension, which has already been
forced and memoized. Hence, the reverse is executed only once. Memoization
is crucial here — without memoization the reverse would be re-executed each

www.manaraa.com

time, for a total cost of m(d + 1) steps, with only m + 1 + d operations over
which to amortize this cost. For large d, this would result in an O(m) amortized
cost per operation, but memoization gives us an amortized cost of only O(1) per
operation.

It is possible to re-execute the reverse however. Simply take £ = 0 (i.e., make
the branch point just before the rotation). Then the first tail of each branch
repeats the rotation and creates a new reverse suspension. This new suspension
is forced in the last tail of each branch, executing the reverse. Because these
are different suspensions, memoization does not help at all. The total cost of all
the reversals is m - d, but now we have (m + 1)(d + 1) operations over which to
amortize this cost, yielding an amortized cost of O(1) per operation. The key is
that we duplicate work only when we also duplicate the sequence of operations
over which to amortize the cost of that work.

This informal argument suggests that these queues require only O(1) amor-
tized time per operation even when used persistently. We can formalize this proof
using a debit argument. For every suspension, we allocate enough debits to cover
the cost of forcing the suspension. Then, we discharge O(1) debits with every
operation. We prove that we never force a suspension before we have discharged
all of its debits.

Proof. Let d; be the number of debits on the 7th node of the front stream and
let D; = E;’:O d; be the cumulative number of debits on all nodes up to and
including the 7th node. We maintain the following debit invariant:

Dy < min(2i, [f] = |7])

The 2¢ term guarantees that all debits on the first node of the front stream have
been discharged (since dg = Dy < 2-0 = 0), so this node may be forced at
will (for instance, by a head operation). The |f| — |r| term guarantees that all
debits in the entire queue have been discharged whenever the streams are of
equal length (i.e., just before the next rotation).

Now, every snoc operation that does not cause a rotation simply adds a new
element to the rear stream, increasing |r| by one and decreasing |f| — |r| by
one. This will cause the invariant to be violated at any node for which D; was
previously equal to | f| —|r|. We can restore the invariant by discharging the first
debit in the queue, which decreases every subsequent cumulative debit total by
one. Similarly, every tail operation that does not cause a rotation simply removes
an element from the front stream. This decreases |f| by one (and hence |f| — |r|
by one), but, more importantly, it decreases the index i of every remaining node
by one, which in turn decreases 2¢ by two. Discharging the first two debits in
the queue restores the invariant.

Finally, consider a snoc or tail that causes a rotation. Just before the rotation,
we are guaranteed that all debits in the queue have been discharged, so, after
the rotation, the only debits are those generated by the rotation itself. If | f| = m
and |r| = m 4+ 1 at the time of the rotation, then there will be m debits for the
append and m + 1 debits for the reverse. The append function is incremental
(i.e., does only one step at a time and delays the rest) so we place one debit on

www.manaraa.com

each of the first m nodes. On the other hand, the reverse function is monolithic
(i.e., once begun, it runs to completion) so we place m + 1 debits on node m,
the first node of the reversed stream. Thus, the debits are distributed such that

1 ifi<m L1 ifi<
di={m+1lifi=m and D;=1" nrsm
r 2m+1if i > m
0 ifz>m

This distribution violates the invariant at both node 0 and node m, but dis-
charging the debit on the first node restores the invariant. ad

This proof uses a debit argument in the style of [22, 24] instead of a traditional
credit argument [27]. Debit arguments are more suitable for analyzing persistent
data structures because, although a single credit cannot be spent more than once,
it does no harm to discharge the same debit more than once. Debit arguments
allow you to reason about the running time of each thread individually, without
worrying about inter-thread dependencies. The intuition is that different threads
amortize the cost of lazy operations either over separate sequences (as when k =
0 in the earlier discussion), or over overlapping sequences (as when 1 < k < m in
the earlier discussion). In the case of separate sequences, each debit is discharged
only once, but in the case of overlapping sequences, each debit may be discharged
more than once. The key is that whenever we force a suspension, we know that
all of its debits have been discharged at least once. Memoization guarantees
that work is not duplicated in separate threads unless it has also been paid for
separately in the two threads.

Exercise4 (Output-restricted Deques). Extend the queues in Figure 4 with
a cons operation that adds an element to the front of a queue instead of the rear.
(A data structure that allows elements to be inserted at both the front and the
rear, but removed only from the front, is called an output-restricted deque). How
does this new operation interact with the balance invariant? With the debit
invariant? &

Exercise 5 (Min-Queues). A min-listis a list data structure that additionally
supports a findMin operation that returns the minimum element in the list. (This
differs from a priority queue in that there is no deleteMin operation.) Min-lists
can be implemented by maintaining a secondary list of rightward minima. In
other words, a min-list containing the elements z; - - -z, would consist of the list
[1,...,%,] and a secondary list [y, ..., yn], where y; = Min’_,z;. Note that,
for ¢ < n,
yi = Minj_;z;
= min(z;, Min}/_; ; z;)
= min(z;, Yi4+1)

Therefore, cons can be implemented as

fun cons (z, ({], [1)) = ([«],[z])

| cons (z, (zs, ys)) = (x :: xs, min (z, hd ys) :: ys)

www.manaraa.com

(a) Use these ideas to implement min-streams, in the style of Figure 1. You
may assume that the elements are integers. Be careful to make the 4+
(append) and reverse operations as lazy as possible.

(b) Use min-streams to implement min-queues, in the style of Figure 4. Each
operation should take only O(1) amortized time. O

Exercise 6 (Deques). A double-ended queue (also called a deque) supports in-
sertion and removal of elements at both ends. We can adapt the implementation
of queues in Figure 4 to support deques by making it symmetric. Currently,
there are two sources of asymmetry. First, the balance invariant prevents the
rear stream from getting too long with respect to the front stream. For deques,
we should instead prevent either stream from getting too long with respect to the
other. In particular, for some constant ¢ > 1, we should maintain the following
invariant:

[fl<elr[+1 A fr|<clfl+1

(The “41” in each of these constraints allows for deques of size 1.) Second,
rotations move all the elements in the queue to the front stream, but for deques,
rotations should instead divide the elements equally between the front and rear
streams.

(a) Use these ideas to implement deques, in the style of Figure 4. Be careful
to make rotations as lazy as possible. You may need to extend the streams
library with a few extra operations.

(b) Use a debit argument to prove that your deques require only O(1) amor-
tized time per operation. <&

Exercise 7 (Worst-case Queues [23]). To get queues that run in O(1) worst-
case time instead of O(1) amortized time, we systematically schedule the execu-
tion of each suspension. We arrange that each suspension takes only O(1) time
to execute, and force one suspension per snoc or tail operation.

(a) Write a rotation function that is entirely incremental by doing one step
of the reverse for every step of the append. You may need to extend the
streams library with a few extra operations.

(b) Add a new field of type o Stream to each queue that points to the first
stream node that has not yet been forced. Rewrite the pseudo-constructor
queue to force the node and advance the pointer to the next node.

(c) Show that the new stream field always has length |f|—|r|. Take advantage
of this fact to eliminate the two length fields from the representation. <

2.3 Eliminating Unnecessary Overheads

The above implementation of queues 1s asymptotically optimal — you can’t ask
for better bounds than O(1) time per operation. However, in practice, it tends
to be fairly slow. There are at least two reasons for this. First, lazy evaluation is

10

www.manaraa.com

slower than strict evaluation, because of the need to create and memoize suspen-
sions. Compilers for lazy languages recognize this fact and use strictness analysis
to turn lazy evaluation into strict evaluation whenever possible. However, when
lazy evaluation serves an algorithmic purpose, as it does here, it will never be
eliminated by strictness analysis. But even if we need lazy evaluation, maybe we
don’t need so much of it.

Second, this implementation uses appends in a rather inefficient way. The
append operation takes time proportional to the size of the left list (or stream).
Hence, for maximum efficiency, it should always be called in right-associative
contexts. For example, on lists, executing (zs @ (ys @ zs)) takes time proportional
to |zs| + |ys|, whereas executing ((zs @ ys) @ zs) takes time proportional to
2|zs| + |ys|. If we take a snapshot of the front stream at any given moment, it
always has the form

(- -((f ++ reverse r1) ++ reverse ry) ++ ---) ++ reverse ry

In general, using appends in left-associative contexts like this results in poten-
tially quadratic behavior. Fortunately, in this case, the latter streams are much
longer than the earlier streams, so the total number of append steps is still lin-
ear. But even if this use of append does not threaten the asymptotic bounds of
our implementation, it does significantly increase the constant factor.

Exercise 8. This exercise 1s to determine the overhead associated with the in-
efficient use of appends.

(a) Calculate the number of append steps executed while building and then
consuming a queue of size n (i.e., n calls to snoc followed by n calls to

tail).
(b) Repeat this calculation assuming that rotations are performed, not when
|r| = |f| + 1, but when |r| = ¢|f| + 1, for some constant c. <&

To make our implementation faster in practice, we will address both of these
issues. First, we will replace streams with a combination of ordinary lists and
a short stream of suspended lists. This drastically reduces the number of sus-
pensions from one per element to two per suspended list. This would not help
if we still touched a suspension every operation, but we will also arrange to
touch suspensions only occasionally. Second, we will use appends only on short
streams.

Recall that the front stream of a queue has the form

(- -((f ++ reverse r1) ++ reverse ry) ++ ---) ++ reverse ry

Writing the rear stream as r, we can decompose the queue into three parts: f,
7, and the collection m = {reverse r1, ..., reverse ry}. Previously, f, r, and each
reverse r; was a stream, but now we can represent f and r as ordinary lists and
each reverse r; as a suspended list. This eliminates the vast majority of suspen-
sions, and avoids almost all of the overheads associated with lazy evaluation.
But how should we represent the collection m? As we will see, this collection is

11

www.manaraa.com

accessed in FIFO order, so it is tempting to represent it as a queue. However,
this collection will always be small, so 1t will be simpler—and just as efficient—to
represent it as a stream. In doing so, we reintroduce some lazy evaluation, but
the overheads of this will be negligible. The new representation is thus

datatype a Queue =
Queue of « list x «a list susp S.Stream X int x « list x int

The second integer tracks the length of r, and the first integer tracks the com-
bined lengths of f and all the suspended lists in m.

The old balance invariant served two purposes. It kept r from getting too long
and it kept f from becoming empty. In this new representation we deal with these
two issues separately. First, we guarantee that f i1s never empty unless the entire
queue is empty. If f is empty and m is non-empty, then we remove the first
suspended list from m, force it, and install the result as the new f. Second, we
guarantee that |r| < [f|+ >, ., |s|. When r becomes too long, we add $rev r
to the end of m. These two invariants are enforced by the pseudo-constructor
queue, which in turn calls a second pseudo-constructor queue’.

fun queue ([], m, lenfm, r, lenr) =
if S.isEmpty m then Queue (r, S.empty, lenr, [], 0) (x |r] < 1 %)
else queue’ (force (S.head m), S.tail m, lenfm, r, lenr)
| queue ¢ = queue’ ¢
and queue’ (q as (f, m, lenfm, r, lenr)) =
if lenr < lenfm then Queue ¢
else Queue (f, msnoc (m, $rev r), lenfm+lenr, [], 0)

In the second line of queue, we install r directly as the new f without reversing
it. We are justified in doing this because we know that r contains at most a
single element, so revr = r.

The msnoc operation called by queue’ is simply snoc on streams, defined by

fun msnoc (m, s) = S.4++ (m, S.cons (s, S.empty))

Although in general it is quite slow to implement snoc in terms of append, in
this case, we know that m 1s always short, so the inefficiency is tolerable.
Now, we can define the major operations on queues as follows:

fun snoc (Queue (f, m, lenfm, r, lenr), #) = queue (f, m, lenfm, x :: v, lenr+1)

fun head (Queue ([], -, -, -, -)) = raise EMPTY
| head (Queue (z :: f, m, lenfm, r, lenr)) = &
fun tail (Queue ([], -, -, , -)) = raise EMPTY

| tail (Queue (z :: f, m, lenfm, r, lenr)) = queue (f, m, lenfm—1, r, lenr)
The complete code for this implementation is shown in Figure 5.
Exercise 9. Prove that for any queue of size n > 1, |m| < |log, n].

Exercise 10. Repeat Exercise 8 for this new implementation.

12

www.manaraa.com

structure Queue2 : QUEUE =
struct
datatype o Queue =
Queue of « list x « list susp S.Stream X int x « list X int

exception EMPTY

val empty = Queue ([], S.empty, 0, [], 0)
fun isEmpty (Queue (f, m, lenfm, r, lenr)) = null f

fun msnoc (m, s) = S.4++ (m, S.cons (s, S.empty))
fun queue ([], m, lenfm, r, lenr) =
if S.isEmpty m then Queue (r, S.empty, lenr, [], 0) (% |r| <1 %)
else queue’ (force (S.head m), S.tail m, lenfm, r, lenr)
| queue g = queue’ g
and queue’ (q as (f, m, lenfm, r, lenr)) =
if lenr < lenfm then Queue q
else Queue (f, msnoc (m, $rev r), lenfr+lenr, [], 0)

fun snoc (Queue (f, m, lenfm, r, lenr), z) = queue (f, m, lenfm, z :: r, lenr+1)

fun head (Queue ([], , _, _, -)) = raise EMPTY
| head (Queue (x :: f, m, lenfm, r, lenr)) = «
fun tail (Queue ([], _, , -, -)) = raise EMPTY
| tail (Queue (z :: f, m, lenfm, r, lenr)) = queue (f, m, lenfm—1, r, lenr)

end

Fig.5. A faster implementation of queues.

Exercise11. Use a debit argument to show that this implementation takes only
O(1) amortized time per operation. (Hint: Keep track of the debits on stream
nodes and the debits on suspended lists separately. Allow at most one debit per
stream node, and require that all suspended lists except the last be fully paid
off.) &

2.4 Bibliographic Notes

Hood and Melville [11] and Gries [9, pages 250-251] first proposed the imple-
mentation of queues in Figure 3. Burton [3] proposed a similar implementation,
but without the restriction that the first list be non-empty whenever the queue
is non-empty. (Burton combines khead and tail into a single operation, so he does
not need this restriction to support head efficiently.) Hoogerwoord [12] later pro-
posed a similar implementation of deques.

Hood and Melville [11] also gave a rather complicated implementation of
queues supporting all operations in O(1) worst-case time. Hood [10] and Chuang
and Goldberg [5] later extended this implementation to handle the double-ended
case. Okasaki [23] showed how to use lazy evaluation to simplify these imple-
mentations, while still retaining the worst-case bounds (see Exercise 7). The
implementation in Figure 4 is a simplification of this approach, first appearing

in [24]

13

www.manaraa.com

Kaplan and Tarjan [16] proposed yet another implementation of constant-
time functional deques, based on an entirely different technique known as recur-
swe slowdown.

3 Catenable Lists

Appending lists is an extremely common operation, at least conceptually. Unfor-
tunately, appending lists can be slow. For instance, we discussed in the previous
section how left-associative appends can result in quadratic behavior. To prevent
this, programmers often transform their programs to remove as many appends
as possible (for instance, by using accumulating parameters). But what if it were
possible to design a list data structure that supported append (also known as
catenation or concatenation) in constant time, without sacrificing the existing
constant-time operations? Such a data structure is called a catenable list. In
particular, we want a implementation of catenable lists that supports every op-
eration in Figure 6 in constant time. Note that cons has been eliminated in favor
of a unit operation that creates a singleton list, because cons (x, xs) can be sim-
ulated by unit x ++ xs. Similarly, snoc (zs,) can be simulated by zs 44 unit x.
Since this data structure supports insertions at either end, but removals only
from the front, it might more accurately be called a catenable output-restricted
deque.

signature CATENABLE =

sig
type a Cat (* catenable lists *)
exception EMPTY

val empty : «a Cat
val isEmpty : a Cat — bool

val unit a — a Cat (* create a singleton list)

val ++ :a Cat x a Cat — a Cat (x infiz append *)

val head ca Cat —» (* raises EMPTY if list is empty *)

val tail :a Cat — a Cat (* raises EMPTY if list is empty *)
end

Fig. 6. Signature for catenable lists.

We first consider a simple solution that makes append fast, at the cost of
slowing down head and tail. We then transform the data structure to recover
efficient head and tail operations.

14

www.manaraa.com

3.1 A Partial Solution

The simplest way to make append fast is to make it a constructor, as in the
following datatype:

datatype « Cat = Empty | Unit of o | App of « Cat x « Cat

This is the type of binary leaf trees, with elements stored at the leaves from left
to right.

Now, unit and ++ simply call the appropriate constructors. The head oper-
ation might be written naively as

fun head Empty = raise EMPTY
| head (Unit z) = «
| head (App (s, t)) = head s

However, a moment’s reflection reveals that the third clause of head is incorrect.
For example, head (App (Empty, Unit x)) raises an exception instead of returning
z. One way to fix this problem is to handle the exception.

| head (App (s, t)) = head s handle EMPTY = head ¢

A better solution is to insist that all trees be well-formed by disallowing occur-
rences of Empty beneath App nodes. We enforce this by having ++ check for
Empty (44 can be viewed as a pseudo-constructor for App).

fun Emply ++ s = s
| s ++ Emply = s
| s ++t = App (s, 1)

Even though the naive version of head is now correct, it is inefficient. In particular
it takes time proportional to the length of the left spine (i.e., the path from the
root to the leftmost leaf), which could be as much as O(n). For now, we accept
this inefficiency.

For taul, there are four cases. We have little choice in three of these cases.

fun tail Empty = raise EMPTY
| tail (Unit) = Empty
| tail (App (Unit z, s)) = s

However, for the fourth case, tail (App (App (s, t), u)), we have at least two
choices:

| tail (App (App (s, ?), u)) = App (tail (App (s, 1)), u)

or

| tail (App (App (s, 1), u)) = tail (App (s, App (1, u)))

15

www.manaraa.com

The first choice deletes the leftmost leaf while leaving the rest of the tree intact.
The second choice dynamically applies the associative rule along the left spine,
converting a tree with a long left spine into a tree with a long right spine. Both
versions take the same amount of time, but the second choice drastically reduces
the cost of subsequent operations. In fact, successive tail operations using the
first choice will frequently take quadratic time, but successive fail operations
using the second choice will take only linear time (see Exercise 12). Hence, we
will use the second version. The complete code for this implementation appears

in Figure 7.

structure Cat0 : CATENABLE =
struct

exception EMPTY

val empty = Empty
fun isEmpty Empty = true | isEmpty - = false

fun unit x = Unit »
fun Empty ++ s = s

| s ++ Empty = s

| s ++ ¢t = App (s, t)

fun head Empty = raise EMPTY
| head (Unit z) = =
| head (App (s, ¢)) = head s
fun tail Empty = raise EMPTY
| tail (Unit) = Empty
| tail (App (Unit z, s)) = s

end

datatype a Cat = Empty | Unit of @ | App of @ Cat x a Cat

| tail (App (App (s, t), u)) = tail (App (s, App (¢, u)))

Fig. 7. Catenable lists as binary leaf trees.

Exercise 12. Prove that executing n successive tail operations on any catenable
list of size n takes only O(n) time. (Hint: Consider the number of bad nodes,

where a bad node is any left child or any descendent of a left child.)

&

Exercise 13. Rather than relying on the programmer to refrain from building
App nodes containing Empty, we could build this requirement into the type.

datatype « Tree = Unit of « | App of o Tree X « Tree

datatype « Cat = Empty | NonEmpty of « Tree

(a) Modify the implementation in Figure 7 to support this new type.
(b) Discuss the advantages and disadvantages of each approach.

16

www.manaraa.com

3.2 Persistent Catenable Lists

Even if the above data structure is efficient in some circumstances, 1t is clearly
not efficient when used persistently. For example, consider building a tree with a
long left spine and then repeatedly taking the head or tail of that tree. We next
combine lazy evaluation with a clever representation of left spines to obtain an
implementation that requires only O(1) amortized time per operation.
Consider how the left spine is treated by the various list operations. The
append operation adds a new node at the top of the left spine, and the head
and tail operations access the leaf at the bottom of the left spine. But these are
just the operations supported by queues! The left spine view of a binary leaf tree
is thus a tree in which every left spine from the binary leaf tree is represented
recursively as an element (the leaf at the bottom of the spine) together with
a queue of left spine views corresponding to the right children of nodes in the
spine. Figure 8 shows a binary leaf tree and its corresponding left spine view.

1
2
4 5 |7

Fig. 8. A binary leaf tree and its left spine view.

If ¢ 1s a structure implementing queues, then the datatype of left spine views
can be written

datatype « Cat = Empty | Cat of a x « Cat Q.Queue

This type can independently be viewed as a type of multiway tree with elements
stored at every node and ordered in left-to-right preorder. Again, we insist that
all trees be well-formed (i.e., that Empty never appears in the child queue of a
Cat node).

Now, simply translating the operations unit, ++, and head from binary leaf
trees to left spine views, we get

fun unit z = Cat (x, Q.empty)
fun Empty ++ s = s

| s ++ Emply = s

| (Cat (x, q)) ++ s = Cat (z, Q.snoc (g, s))
fun head Empty = raise EMPTY

| head (Cat (z, q)) = «

17

www.manaraa.com

The third clause of 4+ links the two trees by making the second tree the last
child of the first tree.

The translation of the tail function is a little trickier. Given a tree Cat (z, ¢),
where ¢ is non-empty, it discards « and links the elements of ¢ from right to left.

fun tail Empty = raise EMPTY
| tail (Cat (#, q)) = if Q.isEmpty ¢ then Empty else linkAll ¢

where linkAll 1s defined as

fun linkAll ¢ = if Q.size ¢ = 1 then Q.head ¢
else Q.head ¢ ++ linkAll (Q.tail ¢)

This code assumes that queues support a constant-time size operator, but it
could easily be rewritten to use @Q.isEmpty. This code can also be viewed as
an instance of the standard foldr! schema. If ¢ provides a foldri function, then
linkAll can be rewritten

fun linkAll ¢ = Q.foldrl (op ++) ¢

Figure 9 illustrates the overall effect of tail operation.

i1

ts

Fig. 9. lllustration of the tail operation on left spine views.

The unit and head operations clearly take O(1) worst-case time. If we use one
of the constant-amortized-time queues from the previous section, then ++ takes
O(1) amortized time. However, tail takes O(|q|) time, which could be as large
as O(n). To reduce this to O(1) amortized time, we need to make one further
change — we execute linkAlllazily. We alter the datatype so that each tree in a
child queue is suspended.

datatype « Cat = Empty | Cat of @ x « Cat susp Q.Queue
Then, linkAll 1s written

fun linkAll ¢ = if Q.size ¢ = 1 then force (Q.head ¢)
else link (force (Q.head ¢), $linkAll (Q.tail ¢))

18

www.manaraa.com

where link is like 4++ but expects its second argument to be suspended.
fun link (Cat (z, ¢), d) = Cat (2, Q.snoc (g, d))

To make the types work out, ++ must be rewritten to suspend its second argu-
ment.

fun Empty ++ s = s
| s ++ Emply = s
| s ++ ¢ = link (s, $t)

The complete code for this implementation appears in Figure 10. It is written
as a functor that is parameterized over the particular implementation of queues.

functor Catl (structure Q : QUEUE) : CATENABLE =
struct
datatype a Cat = Empty | Cat of @ x o Cat susp Q.Queue

exception EMPTY

val empty = Empty
fun isEmpty Empty = true | isEmpty _ = false

fun link (Cat (=, q), d) = Cat (z, Q.snoc (g, d))
fun linkAll ¢ = if Q.size ¢ = 1 then force (Q.head q)
else link (force (Q.head g¢), $linkAll (Q.tail ¢))

fun unit z = Cat (¢, Q.empty)
fun Empty ++ s = s

| s ++ Empty = s

| s ++ ¢ = link (s, $¢t)

fun head Empty = raise EMPTY
| head (Cat (z, ¢)) = =
fun tail Empty = raise EMPTY
| tail (Cat (z, ¢)) = if Q.isEmpty g then Empty else linkAll ¢
end

Fig. 10. Catenable lists using lazy left spine views.

Exercise 14. Implement cons and snoc directly for this implementation instead
of in terms of unit and ++. <&

We now prove that ++ and tail take only O(1) amortized time using a debit
argument. Each performs only O(1) work aside from forcing suspensions, so we
must show that discharging O(1) debits per ++ and tail suffices to discharge all
debits before their associated suspensions are forced.

19

www.manaraa.com

Proof. Let di(i) be the number of debits on the ith node of tree ¢ and let D, (i) =
E;’:O d¢(7) be the cumulative number of debits on all nodes up to and including
the ith node of #. Finally, let D; be the total number debits on all nodes in ¢
(i.e., Dy = D¢(Jt| — 1)). We maintain two invariants on debits.

First, we require that the number of debits on any node be bounded by the
degree of the node (i.e., d¢ (i) < degree,(¢)). Since the sum of degrees of all nodes
in a non-empty tree is one less than the size of the tree, this implies that the
total number of debits in a tree is bounded by the size of the tree (i.e., Dy < |¢]).
We will maintain this invariant by incrementing the number of debits on a node
only when we also increment its degree.

Second, we insist that the D;(¢) be bounded by some linear function on i.
The particular linear function we choose 1s

Dy (%) < i+ depth, (i)

where depth, (i) is the length of the path in ¢ from the root to node 4. This
invariant is called the left-linear debit invariant. Note that the left-linear debit
invariant guarantees that d¢(0) = D;(0) < 040 = 0, so all debits on a node must
be discharged by the time it reaches the root. (Recall that the root is not even
suspended!) The only time we actually force a suspension is when the suspended
node is to become the new root.

We first show that 4++ maintains both invariants by discharging only a single
debit. The only debit created by append is for the trivial suspension of its second
argument. Since we are not increasing the degree of this node, we immediately
discharge the new debit. Now, assume that ¢; and ¢; are non-empty and let
t = {1++12. Let n = |{1]|. Note that the index, depth, and cumulative debits of
each node in #; are unaffected by the append, so for i < n

Dy (i) = Dy, (7)
i+ depth, (i)

i+ depth, (i)

A

The nodes in t5 increase in index by n, increase in depth by one, and accumulate
the total debits of ¢1, so for i > n

Di(n+1) = Di, + D, (i)
< n+Dt2(Z)
< n +1i+ depthy, (i)
=n+i+depth(n+i)—1
< (n 4+ 1) + depth,(n + 0)

Thus, we do not need to discharge any further debits to maintain the left-linear
debit invariant.

Finally, we show that ta:l maintains both invariants by discharging three deb-
its. Let ¢/ = tail t. After discarding the root of ¢, we link the children ¢y .. .¢,,_1
from right to left. Let ¢’ be the partial result of linking ¢; .. .¢,—1. Then ¢’ = ;.
Since every link except the outermost is suspended, we assign a single debit to
the root of each ¢;, 0 < j < m — 1. Note that the degree of each of these nodes

20

www.manaraa.com

increases by one. We also assign a debit to the root of ¢/, | because the last call
to linkAll is suspended even though it does not call link. Since the degree of this
node does not change, we immediately discharge this final debit.

Now, suppose the ith node of ¢ appears in t;. We know that D, (i) < i +
depth, (i), but consider how each of these quantities changes with the tail ¢
decreases by one because the first element is discarded. The depth of each node
in ¢; increases by j — 1 (see Figure 9) while the cumulative debits of each node
in ¢; increases by j. Thus,

Di(i—1) = Dy(:) +j
i+ depth, (i) + j
i+ (depthy(i — 1) = (j — 1)) + j
(i — 1) + depthy(i — 1) + 2

A

Discharging the first two debits restores the invariant, for a total of three debits.
O

Exercise 15. This exercise explores conversion functions from lists to catenable
lists.

(a) Write a function makeCat : o list = a Cat that runs in O(1) amortized

time.
(b) Write a function flatten : o list list— o Cat that runs in O(14+F) amortized
time, where E is the number of empty lists in the original list. <&

3.3 Bibliographic Notes

Hughes [13, 14] has investigated several implementations of catenable lists, in-
cluding ones similar to Figure 7. However, he does not support efficient head and
tail operations; rather, he supplies a single operation for converting a catenable
list to an ordinary list. This is comparable to requiring that all of the appends
precede all the heads and tails.

Kaplan and Tarjan [16] gave the first functional implementation of catenable
lists to support all operations in O(1) worst-case time, based on the technique
of recursive slowdown. Shortly thereafter, Okasaki [22] developed the implemen-
tation in Figure 10. This implementation is much simpler than Kaplan and Tar-
jan’s approach, but supports all operations in O(1) amortized time, rather than
worst-case time.

4 Heaps

For queues and catenable lists, the usual imperative implementations do not
translate well to a functional setting. For heaps (priority queues), however, many
standard imperative solutions translate quite nicely. In Section 4.1, we consider
one such example — leftist heaps [6, 18]. In Section 4.2, though, we consider a
second example — pairing heaps [8] — that is more problematical.

21

www.manaraa.com

Figure 11 gives a minimal signature for mergeable heaps. Note that these
heaps are not polymorphic; rather, the type of elements is fixed, as is the ordering
relation on those elements. Not all heap data structures support an efficient
merge operation, but we will consider only those that do. Heap data structures
typically also support an insert operation, but, as we did for catenable lists, we
have eliminated this operation in favor of a unit operation since insert (z, h) can
be simulated by merge (unit z, h).

signature ORDERED =
sig
type T (* type of ordered elements *)
valleq : T x T — bool (x total ordering relation *)
end
signature HEAP =
sig
structure Elem : ORDERED
type Heap

exception EMPTY

val empty : Heap

val isEmpty : Heap — bool

val unit : Elem.T — Heap (* create a singleton heap *)

val merge : Heap x Heap — Heap

val findMin : Heap — Elem.T (* raises EMPTY if heap is emply *)

val deleteMin : Heap — Heap (* raises EMPTY if heap is emply *)
end

Fig. 11. Signature for heaps (priority queues).

4.1 Leftist Heaps

A heap-ordered tree 1s one in which the root of each subtree contains the min-
imum element in that subtree. Thus, the root of a heap-ordered tree is always
the overall minimum element in the tree.

Define the r-height of a binary tree to be the length of its right spine (i.e., the
length of the rightmost path to an empty node). Leftist heaps are heap-ordered
binary trees that satisfy the leftist property: the r-height of any left child is > the
r-height of its right sibling. Note that the right spine of a leftist heap is always
the shortest path from the root to an empty node.

Exercise 16. Prove that the r-height of a leftist heap of size n > 0is < log, n+1.
<&

22

www.manaraa.com

Leftist heaps are represented by the following type:
datatype Heap = Empty | Node of int x Elem.T x Heap x Heap

where the integer records the length of the right spine.
The unit, findMin, and deleteMin operations on leftist heaps are trivial.

fun unit # = Node (1, z, Empty, Empty)
fun findMin Empty = raise EMPTY
| findMin (Node (r, z, a, b)) = «
fun deleteMin Empty = raise EMPTY
| deleteMin (Node (r, #, a, b)) = merge (a, b)

To merge two leftist heaps, you merge their right spines in the same way
that you would merge two ordered lists. Then you swap children of nodes along
the merge path as necessary to restore the leftist property. This swapping is
performed by the pseudo-constructor node.

fun node (z, a, Empty) = Node (1, #, a, Empty)
| node (#, Empty, §) = Node (1, z, b, Empty)
| node (x, a as Node (ra, _, _, _), b as Node (rb, _, _, _)) =
if ra < rb then Node (ra+1, z, b, a) else Node (rb+1, z, a, b)

Finally, merge may be implemented as

fun merge (@, Empty) = a
| merge (Empty, b) = b
| merge (a as Node (_, z, ay, az2), b as Node (-, y, b1, b2)) =
if Elem.leq (#, y) then node (x, a1, merge (as, b))
else node (y, by, merge (b2, a))

The complete code for leftist heaps appears in Figure 12.

Because the right spine of a leftist heap has logarithmic height, and merge
traverses the right spines of its two arguments, merge takes O(logn) worst-case
time. deleteMin calls merge, so it also takes O(logn) worst-case time. unit and
findMin run in O(1) time.

Exercise17. Implement insert directly instead of via unit and merge. <&

Exercise 18. Implement a function makeHeap : Elem.T list — Heap that pro-
duces a leftist heap from an unordered list of elements in O(n) time. (Note that
the naive approach of folding insert across the list takes O(nlogn) time.) <

Exercise 19 (Weight-biased Leftist Heaps [4]). Weight-biased leftist heaps
are an alternative to leftist heaps that replace the leftist property with the wetght-
biased leftist property: the size of any left child is > the size of its right sibling.

(a) Prove that the right spine of a weight-biased leftist heap of size n > 0 has
length <log,n + 1.

23

www.manaraa.com

functor Leftist (structure E : ORDERED) : HEAP =
struct
structure Elem = E

datatype Heap = Empty | Node of int x Elem.T x Heap x Heap
exception EMPTY

val empty = Empty
fun isEmpty Empty = true | isEmpty - = false

fun node (z, a, Empty) = Node (1, z, a, Empty)
| node (z, Empty, b) = Node (1, z, b, Empty)
| node (z, a as Node (ra, _, _,), b as Node (rb, _, _, _)) =
if ra < rb then Node (ra+1, z, b, a) else Node (rb+1, z, a, b)

fun unit z = Node (1, z, Empty, Empty)
fun merge (¢, Empty) = a
| merge (Empty, b) = b
| merge (a as Node (_, x, a1, az2), b as Node (_, y, b1, b2)) =
if Elem.leq (¢, y) then node (z, a1, merge (a2, b))
else node (y, b1, merge (b2, a))

fun findMin Empty = raise EMPTY
| findMin (Node (r, z, a, b)) =«
fun deleteMin Empty = raise EMPTY
| deleteMin (Node (r, , a, b)) = merge (a, b)
end

Fig. 12. Leftist heaps.

(b) Modify the implementation in Figure 12 to obtain weight-biased leftist
heaps.

(c) Currently, merge operates in two passes: a top-down pass consisting of
calls to merge, and a bottom-up pass consisting of calls to the pseudo-
constructor node. Modify merge for weight-biased leftist heaps to operate
in a single, top-down pass.

(d) What advantages would the top-down version of merge have in a lazy
environment? In a concurrent environment?

4.2 Pairing Heaps

Pairing heaps are heap-ordered multiway trees, as defined by the following
datatype:

datatype Heap = Empty | Node of Elem.T x Heap list

We insist that all pairing heaps be well-formed (i.e., that Fmpty never occur in
a child list of Node).

The unit and findMin operations are trivial.

24

www.manaraa.com

fun unit # = Node (z, [])
fun findMin Empty = raise EMPTY
| findMin (Node (z, ¢s)) = =

The merge operation makes the node with the larger root the leftmost child of
the node with the smaller root.

fun merge (@, Empty) = a
| merge (Empty, b) = b
| merge (a as Node (z, ¢s), b as Node (y, ds)) =
if Elem.leq (#, y) then Node (z, b :: ¢s) else Node (y, a :: ds)

Pairing heaps get their name from the deleteMin operation. deleteMin discards
the root and then merges the children in two passes. The first pass merges
children in pairs from left to right (i.e., the first child with the second, the third
with the fourth, and so on). The second pass merges the remaining trees from
right to left. This can be coded concisely as

fun mergeAll [] = Empty
| mergeAll [a] = a
| mergeAll (a :: b :: rest) = merge (merge (a, b), mergeAll rest)

Then, deleteMin is simply

fun deleteMin Empty = raise EMPTY
| deleteMin (Node (z, ¢s)) = mergeAll ¢s

The complete code for this implementation is given in Figure 13.

In practice, pairing heaps are among the fastest of all imperative priority
queues [15, 19, 21]. Since pairing heaps are also among the simplest of priority
queues, they are the data structure of choice for many applications. Surprisingly,
however, tight bounds for pairing heaps are not known. Clearly, unzt, findMin,
and merge run in O(1) worst-case time, but deleteMin might take as much as
O(n) worst-case time. It has been conjectured [8] that the amortized running
time of merge and deleteMin are O(1) and O(logn) respectively, but, even if
true of an imperative implementation, this amortized bound is clearly false in
the presence of persistence.

Suppose we call deleteMin on some pairing heap h = Node (, ¢s). The result
is simply mergeAll cs. Now, suppose we merge h with two other pairing heaps
a and b, where the root of h 1s less than the roots of a and b. The result is
h’= Node (x,b :: a :: cs). If we now call deleteMin on h’, we will duplicate the
work of mergeAll cs.

To cope with persistence, we must prevent this duplicated work. We once
again turn to lazy evaluation. Instead of a Heap list, we instead represent the
children of a node as a Heap susp. This suspension is equal to $mergeAll cs.
Since mergeAll operates on pairs of children, we extend the suspension with two
children at once. Therefore, each node will contain an extra Heap field that will
contain any partnerless child. If there are no partnerless children (i.e., if the

25

www.manaraa.com

functor Pairing0 (structure E : ORDERED) : HEAP =
struct
structure Elem = E

datatype Heap = Empty | Node of Elem.T x Heap list
exception EMPTY

val empty = Empty
fun isEmpty Empty = true | isEmpty - = false

fun unit z = Node (z, [])
fun merge (¢, Empty) = a
| merge (Empty, b) = b
| merge (a as Node (z, cs), b as Node (y, ds)) =
if Elem.leq (¢, y) then Node (z, b :: ¢s) else Node (y, a :: ds)

fun mergeAll [] = Empty
| mergeAll [a] = a
| mergeAll (a :: b :: rest) = merge (merge (a, b), mergeAll rest)

fun findMin Empty = raise EMPTY
| findMin (Node (%, ¢s)) =«
fun deleteMin Empty = raise EMPTY
| deleteMin (Node (z, ¢s)) = mergeAll cs

end

Fig. 13. Pairing heaps.

number of children is even), then this extra field will be empty. Since this field
i1s in use only when the number of children is odd, call this the odd field. The
new datatype is thus

datatype Heap = Empty | Node of Elem.T x Heap x Heap susp
As usual, the unit and findMin operations trivial.

fun unit z = Node (z, Empty, $Empty)
fun findMin Empty = raise EMPTY
| findMin (Node (x, a, m)) =«

Previously, the merge operation was simple and the deleteMin operation was
complex. Now, the situation is reversed — all the complexity of mergeAll has
been shifted to merge, which must set up the appropriate suspensions. deleteMin
1s simply

fun deleteMin Empty = raise EMPTY
| deleteMin (Node (z, a, m)) = merge (a, force m)

We define merge in two steps. The first step checks for empty arguments and
otherwise compares the two arguments to see which has the smaller root.

26

www.manaraa.com

fun merge (@, Empty) = a
| merge (Empty, b) = b
| merge (@ as Node (x, _,), b as Node (y, _, _)) =
if Elem.leq (z, y) then link (a, b) else link (b, a)

The second step, embodied in the link helper function, adds a new child to a
node. If the odd field is empty, then this child is placed in the odd field.

fun link (Node (#, Empty, m), a) = Node (z, a, m)
Otherwise, the new child is paired with the child in the odd field, and both

are added to the suspension. In other words, we extend the suspension m =
$mergeAll es to $mergeAll (a :: b :: ¢s). Observe that

SmergeAll (a = b cs) merge (merge (a, b), mergeAll es)

=%
= $merge (merge (a, b), force ($mergeAll cs))
=%

merge (merge (a, b), force m)
so the second clause of link may be written

fun link (Node (z, b, m), a) =
Node (#, Empty, $merge (merge (a, b), force m)

The complete code for this implementation is given in Figure 14.

Although it now deals gracefully with persistence, this implementation of
pairing heaps is relatively slow in practice, because of overheads associated with
lazy evaluation. Still, in an entirely lazy language, such as Haskell, where all data
structures will pay these overheads regardless of whether they actually gain any
benefit from lazy evaluation, this implementation should be competitive.

Exercise 20. Design an experiment to test whether the implementation in Fig-
ure 14 really does support merge in O(1) amortized time and deleteMin in
O(logn) amortized time for non-single-threaded sequences of operations. &

4.3 Bibliographic Notes

Leftist heaps were invented by Crane [6], and first presented in their current form
by Knuth [18, pages 150-152]. Nifez, Palao, and Pefia developed a functional
implementation of leftist heaps similar to that in Figure 12.

Fredman, Sedgewick, Sleator, and Tarjan introduced pairing heaps in [8], and
conjectured that insert and merge run in O(1) amortized time, while deleteMin
runs in O(logn) amortized time. Stasko and Vitter [26] proved that the bounds
on nsert and deleteMin did in fact hold for a variant of pairing heaps, but they
did not consider the merge operation. Several studies have shown that pairing
heaps are among the fastest implementations of priority queues in practice [15,
19, 21].

Many other implementations of priority queues can be adapted very eas-
ily to a functional setting. For example, King [17] and Okasaki [24] have de-
scribed functional implementations of binomial queues. Brodal and Okasaki [2]

27

www.manaraa.com

functor Pairingl (structure E : ORDERED) : HEAP =
struct
structure Elem = E

datatype Heap = Empty | Node of Elem.T x Heap x Heap susp
exception EMPTY

val empty = Empty
fun isEmpty Empty = true | isEmpty - = false

fun unit z = Node (z, Empty, $Empty)
fun merge (¢, Empty) = a
| merge (Empty, b) = b
| merge (a as Node (z, _, _), b as Node (y, _, _)
if Elem.leq (, y) then link (a, b) else link (b, a)
and link (Node (z, Empty, m), a) = Node (z, a, m
| link (Node (z, b, m), a) =
Node (z, Empty, $merge (merge (a, b), force m))
fun findMin Empty = raise EMPTY
| findMin (Node (z, a, m)) = z
fun deleteMin Empty = raise EMPTY
| deleteMin (Node (z, a, m)) = merge (a, force m)

end

Fig. 14. Persistent pairing heaps.

have modified binomial queues to obtain an efficient functional implementation
that supports findMin, insert, and merge in O(1) worst-case time, and delete Min
in O(logn) worst-case time.

5 Closing Remarks

We have presented efficient functional implementations of three common abstrac-
tions: FIFO queues, catenable lists, and mergeable heaps. Besides being useful
in practice, particularly for applications requiring persistence, these implemen-
tations illustrate many of the techniques of functional data structure design.

Some imperative data structures can easily be adapted to functional lan-
guages, but most cannot. We have seen one example (leftist heaps) of a data
structure that is essentially the same in ML as in C, and another (pairing heaps)
that can easily be translated into a functional language, but that then needs
some non-trivial modifications to handle persistence efficiently. The remaining
two data structures (FIFO queues and catenable lists) must be redesigned from
scratch — the usual imperative solutions are completely unsuitable for functional
implementations.

Functional data structures are not of interest only to functional programmers.
Functional languages provide a convenient framework for designing persistent

28

www.manaraa.com

data structures. If desired, these data structures can then be implemented in
imperative languages. In fact, for some problems, such as catenable lists [16, 22],
the best known persistent solutions were designed in exactly this way.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Stephen Adams. Efficient sets—a balancing act. Journal of Functional Program-

ming, 3(4):553-561, October 1993.

. Gerth Stglting Brodal and Chris Okasaki. Optimal purely functional priority

queues. Journal of Functional Programming, 6(6), December 1996. To appear.

. F. Warren Burton. An efficient functional implementation of FIFO queues. Infor-

mation Processing Letters, 14(5):205-206, July 1982.

. Seonghun Cho and Sartaj Sahni. Weight biased leftist trees and modified skip lists.

In International Computing and Combinatorics Conference, page 77, June 1996.

. Tyng-Ruey Chuang and Benjamin Goldberg. Real-time deques, multihead Tur-

ing machines, and purely functional programming. In Conference on Functional
Programming Languages and Computer Architecture, pages 289-298, June 1993.

. Clark Allan Crane. Linear lists and priority queues as balanced binary trees. PhD

thesis, Computer Science Department, Stanford University, February 1972. Avail-
able as STAN-CS-72-259.

. James R. Driscoll, Neil Sarnak, Daniel D. K. Sleator, and Robert E. Tarjan.

Making data structures persistent. Journal of Computer and System Sciences,
38(1):86-124, February 1989.

. Michael L. Fredman, Robert Sedgewick, Daniel D. K. Sleator, and Robert E. Tar-

jan. The pairing heap: A new form of self-adjusting heap. Algorithmica, 1(1):111-
129, 1986.

. David Gries. The Science of Programming. Texts and Monographs in Computer

Science. Springer-Verlag, New York, 1981.

Robert Hood. The Efficient Implementation of Very- High-Level Programming Lan-
guage Constructs. PhD thesis, Department of Computer Science, Cornell Univer-
sity, August 1982. (Cornell TR 82-503).

Robert Hood and Robert Melville. Real-time queue operations in pure Lisp. In-
formation Processing Letters, 13(2):50-53, November 1981.

Rob R. Hoogerwoord. A symmetric set of efficient list operations. Journal of
Functional Programming, 2(4):505-513, October 1992.

John Hughes. A novel representation of lists and its application to the function
“reverse”. Information Processing Letters, 22(3):141-144, March 1986.

John Hughes. The design of a pretty-printing library. In First International Spring
School on Advanced Functional Programming Techniques, volume 519 of LNCS,
pages 53-96. Springer-Verlag, May 1995.

Douglas W. Jones. An empirical comparison of priority-queue and event-set im-
plementations. Communications of the ACM, 29(4):300-311, April 1986.

Haim Kaplan and Robert E. Tarjan. Persistent lists with catenation via recursive
slow-down. In ACM Symposium on Theory of Computing, pages 93-102, May 1995.
David J. King. Functional binomial queues. In Glasgow Workshop on Functional
Programming, pages 141-150, September 1994.

Donald E. Knuth. Searching and Sorting, volume 3 of The Art of Computer Pro-
grammieng. Addison-Wesley, 1973.

29

www.manaraa.com

19. Andrew M. Liao. Three priority queue applications revisited. Algorithmica,
7(4):415-427, 1992.

20. Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
The MIT Press, Cambridge, Massachusetts, 1990.

21. Bernard M. E. Moret and Henry D. Shapiro. An empirical analysis of algorithms
for constructing a minimum spanning tree. In Workshop on Algorithms and Data
Structures, volume 519 of LNCS, pages 400-411. Springer-Verlag, August 1991.

22. Chris Okasaki. Amortization, lazy evaluation, and persistence: Lists with catena-
tion via lazy hnking. In IFEF Symposium on Foundations of Computer Science,
pages 646—654, October 1995.

23. Chris Okasaki. Simple and efficient purely functional queues and deques. Journal
of Functional Programming, 5(4):583-592, October 1995.

24. Chris Okasaki. The role of lazy evaluation in amortized data structures. In
ACM SIGPLAN International Conference on Functional Programming, pages 62—
72, May 1996.

25. David A. Schmidt. Detecting global variables in denotational specifications. ACM
Transactions on Programming Languages and Systems, 7(2):299-310, April 1985.

26. John T. Stasko and Jeffrey S. Vitter. Pairing heaps: experiments and analysis.
Communications of the ACM, 30(3):234-249, March 1987.

27. Robert E. Tarjan. Amortized computational complexity. STAM Journal on Alge-
braic and Discrete Methods, 6(2):306-318, April 1985.

This article was processed using the IATpX macro package with LLNCS style

30

www.manaraa.com

